Genetic interaction between calcineurin and type 2 myosin and their involvement in the regulation of cytokinesis and chloride ion homeostasis in fission yeast.

نویسندگان

  • Masaaki Fujita
  • Reiko Sugiura
  • Yabin Lu
  • Linxiao Xu
  • Yujie Xia
  • Hisato Shuntoh
  • Takayoshi Kuno
چکیده

Calcineurin plays a critical role in Ca(2+) signaling in various cell types. In fission yeast, calcineurin is required for cytokinesis and chloride ion homeostasis. However, most of its physiological functions remain obscure. A genetic screen was performed to identify genes that share an essential function with calcineurin. We screened for mutations that confer sensitivity to the calcineurin inhibitor FK506 and to a high concentration of chloride ion and isolated a mutant, cis2-1/myp2-c2, which contains a novel allele of the myp2(+)/myo3(+) gene that encodes a type 2 myosin heavy chain. The myp2-c2 mutant showed morphological defects similar to those associated with a calcineurin deletion mutant, such as multiseptated and branched cells. Consistently, myp2-null cells were hypersensitive to chloride ion and showed the multiseptated phenotype in the presence of immunosuppressants or at high chloride concentrations. Overexpression of constitutively active calcineurin suppressed the chloride ion-sensitive growth defect and cytokinesis abnormality of the myp2-c2 mutant and myp2-null cells. Interestingly, the essential myosin light chain mutant cdc4-8 failed to grow and could not form a normal contractile ring in the presence of immunosuppressants. Furthermore, calcineurin-null cells exhibited aberrant contractile rings, suggesting impaired contraction of the rings. These results indicate that calcineurin is involved in the regulation of cytokinesis and that chloride ion homeostasis is mediated by type 2 myosin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geranylgeranyltransferase Cwg2-Rho4/Rho5 module is implicated in the Pmk1 MAP kinase-mediated cell wall integrity pathway in fission yeast.

Pmk1, a fission yeast homologue of mammalian ERK MAPK, regulates cell wall integrity, cytokinesis, RNA granule formation and ion homeostasis. Our screen for vic (viable in the presence of immunosuppressant and chloride ion) mutants identified regulators of the Pmk1 MAPK signaling, including Cpp1 and Rho2, based on the genetic interaction between calcineurin and Pmk1 MAPK. Here, we identified th...

متن کامل

pmp1+, a suppressor of calcineurin deficiency, encodes a novel MAP kinase phosphatase in fission yeast.

Calcineurin is a highly conserved and ubiquitously expressed Ca2+- and calmodulin-dependent protein phosphatase. The in vivo role of calcineurin, however, is not fully understood. Here, we show that disruption of the calcineurin gene (ppb1(+)) in fission yeast results in a drastic chloride ion (Cl-)-sensitive growth defect and that a high copy number of a novel gene pmp1(+) suppresses this defe...

متن کامل

Its8, a fission yeast homolog of Mcd4 and Pig-n, is involved in GPI anchor synthesis and shares an essential function with calcineurin in cytokinesis.

In fission yeast, calcineurin is required for cytokinesis and ion homeostasis; however, most of its physiological roles remain obscure. To identify genes that share an essential function with calcineurin, we screened for mutations that confer sensitivity to the calcineurin inhibitor FK506 and high temperature and isolated the mutant its8-1. its8(+) encodes a homolog of the budding yeast MCD4 an...

متن کامل

Calcineurin phosphatase in signal transduction: lessons from fission yeast.

Calcineurin (protein phosphatase 2B), the only serine/threonine phosphatase under the control of Ca2+/calmodulin, is an important mediator in signal transmission, connecting the Ca2+-dependent signalling to a wide variety of cellular responses. Furthermore, calcineurin is specifically inhibited by the immunosuppressant drugs cyclosporin A and tacrolimus (FK506), and these drugs have been a powe...

متن کامل

Rho2 is a Target of the Farnesyltransferase Cpp1 and Acts Upstream of Pmk1 MAP Kinase Signaling in Fission Yeast

We have previously demonstrated that knockout of the calcineurin gene or inhibition of calcineurin activity by immunosuppressants resulted in hypersensitivity to Cl in fission yeast. We also demonstrated that knockout of the components of the Pmk1 MAPK pathway, such as Pmk1 or Pek1 complemented the hypersensitivity to Cl. Utilizing this interaction between calcineurin and Pmk1 MAPK, here we dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 161 3  شماره 

صفحات  -

تاریخ انتشار 2002